Prim’s Algorithm helps in finding the Minimum Spanning Tree (MST) from a weighted undirected graph by starting from one node and growing the MST one edge at a time.
#include <stdio.h> #include <limits.h> #define V 5 int minKey(int key[], int mstSet[]) { int min = INT_MAX, min_index; for (int v = 0; v < V; v++) if (mstSet[v] == 0 && key[v] < min) min = key[v], min_index = v; return min_index; } void printMST(int parent[], int graph[V][V]) { printf("Edge \tWeight\n"); int totalWeight = 0; for (int i = 1; i < V; i++) { printf("%d - %d \t%d \n", parent[i], i, graph[i][parent[i]]); totalWeight += graph[i][parent[i]]; } printf("Total Cost of MST: %d\n", totalWeight); } void primMST(int graph[V][V]) { int parent[V]; // To store MST int key[V]; // Used to pick min weight edge int mstSet[V]; // Vertices included in MST for (int i = 0; i < V; i++) key[i] = INT_MAX, mstSet[i] = 0; key[0] = 0; // Start from vertex 0 parent[0] = -1; for (int count = 0; count < V - 1; count++) { int u = minKey(key, mstSet); mstSet[u] = 1; for (int v = 0; v < V; v++) if (graph[u][v] && mstSet[v] == 0 && graph[u][v] < key[v]) parent[v] = u, key[v] = graph[u][v]; } printMST(parent, graph); } int main() { int graph[V][V] = { {0, 2, 0, 6, 0}, {2, 0, 3, 8, 5}, {0, 3, 0, 0, 7}, {6, 8, 0, 0, 9}, {0, 5, 7, 9, 0} }; primMST(graph); return 0; }
Edge Weight 0 - 1 2 1 - 2 3 0 - 3 6 1 - 4 5 Total Cost of MST: 16
Help others discover Technorank Learning by sharing your honest experience.
Your support inspires us to keep building!