The Shortest Path in a graph refers to finding the minimum distance between two nodes. This is crucial in routing, navigation, and optimization problems.
#include <stdio.h> #include <limits.h> #define V 5 int minDistance(int dist[], int visited[]) { int min = INT_MAX, min_index; for (int v = 0; v < V; v++) if (!visited[v] && dist[v] <= min) min = dist[v], min_index = v; return min_index; } void dijkstra(int graph[V][V], int src) { int dist[V]; // Shortest distance from src to i int visited[V]; // True if vertex i is finalized for (int i = 0; i < V; i++) { dist[i] = INT_MAX; visited[i] = 0; } dist[src] = 0; for (int count = 0; count < V - 1; count++) { int u = minDistance(dist, visited); visited[u] = 1; for (int v = 0; v < V; v++) if (!visited[v] && graph[u][v] && dist[u] != INT_MAX && dist[u] + graph[u][v] < dist[v]) dist[v] = dist[u] + graph[u][v]; } printf("Vertex\tDistance from Source\n"); for (int i = 0; i < V; i++) printf("%d \t\t %d\n", i, dist[i]); } int main() { int graph[V][V] = { {0, 2, 0, 6, 0}, {2, 0, 3, 8, 5}, {0, 3, 0, 0, 7}, {6, 8, 0, 0, 9}, {0, 5, 7, 9, 0} }; dijkstra(graph, 0); return 0; }
Vertex Distance from Source 0 0 1 2 2 5 3 6 4 7
Used in GPS systems, routing in networks, and many path-finding problems in games and robotics.
Help others discover Technorank Learning by sharing your honest experience.
Your support inspires us to keep building!