Prim’s Algorithm helps in finding the Minimum Spanning Tree (MST) from a weighted undirected graph by starting from one node and growing the MST one edge at a time.
#include <stdio.h>
#include <limits.h>
#define V 5
int minKey(int key[], int mstSet[]) {
int min = INT_MAX, min_index;
for (int v = 0; v < V; v++)
if (mstSet[v] == 0 && key[v] < min)
min = key[v], min_index = v;
return min_index;
}
void printMST(int parent[], int graph[V][V]) {
printf("Edge \tWeight\n");
int totalWeight = 0;
for (int i = 1; i < V; i++) {
printf("%d - %d \t%d \n", parent[i], i, graph[i][parent[i]]);
totalWeight += graph[i][parent[i]];
}
printf("Total Cost of MST: %d\n", totalWeight);
}
void primMST(int graph[V][V]) {
int parent[V]; // To store MST
int key[V]; // Used to pick min weight edge
int mstSet[V]; // Vertices included in MST
for (int i = 0; i < V; i++)
key[i] = INT_MAX, mstSet[i] = 0;
key[0] = 0; // Start from vertex 0
parent[0] = -1;
for (int count = 0; count < V - 1; count++) {
int u = minKey(key, mstSet);
mstSet[u] = 1;
for (int v = 0; v < V; v++)
if (graph[u][v] && mstSet[v] == 0 && graph[u][v] < key[v])
parent[v] = u, key[v] = graph[u][v];
}
printMST(parent, graph);
}
int main() {
int graph[V][V] = {
{0, 2, 0, 6, 0},
{2, 0, 3, 8, 5},
{0, 3, 0, 0, 7},
{6, 8, 0, 0, 9},
{0, 5, 7, 9, 0}
};
primMST(graph);
return 0;
}
Edge Weight 0 - 1 2 1 - 2 3 0 - 3 6 1 - 4 5 Total Cost of MST: 16
Help others discover Technorank Learning by sharing your honest experience.
Your support inspires us to keep building!